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Introduction

* To learn the generator’s distribution p, over data X, firstly, input noise variables
p,(2), defined.

* Representing a mapping to data space as G(Z; Hg), where G is a differentiable
function represented by a multilayer perceptron with parameters Hg.

 Second multilayer perceptron D(x; 8;) that outputs a single scalar. D(x)
represents the probability that x came from the data rather than p,,.

min maxV(D,G) = E,_,, . xllog D(x)] + E,p (5 [108 (1 — D(G(Z)))]
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Introduction

*¢ The original GAN used fully-connected networks and can only generate small
images.

IS(G) = exp ( Ex~p, Dxr(p(ylx) || p(v)))

L L

FID(z,9) = ||tz — f-‘g“% + Tr(Ez + Xy — 2(X:X4)?),



https://www.linkedin.com/pulse/intro-convolutional-neural-networks-cnn-lamiae-hana/?articleId=6615301137878794240

Introduction

DCGAN (Radford et al., 2015) was the first to scale up GANs using CNN
architectures, which allowed for stable training for higher resolution and deeper

generative models.
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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.
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Introduction

In the computer vision domain, nearly every successful GAN relies on CNN-based
generators and discriminators.

Convolutions, with the strong inductive bias for natural images, crucially
contribute to the appealing visual results and rich diversity achieved by modern
GANSs.

Fundamentally, a convolution operator has a local receptive field, and hence CNNs
cannot process long-range dependencies unless passing through a sufficient
number of layers.

However, that could cause the loss of feature resolution and fine details, in
addition to the difficulty of optimization.



Can We Build a Strong GAN
Completely Free of Convolutions?

Not only arising from intellectual curiosity, but also of practical relevance.

Inspired by the emerging trend of using Transformer architectures for computer
vision tasks (Carion et al., 2020;Zeng et al., 2020; Dosovitskiy et al., 2020).

Transformers (Vaswani et al., 2017; Devlin et al., 2018) have prevailed in natural
language processing (NLP), and lately, start to perform comparably or even better
than their CNN competitors in a variety of vision benchmarks.



Can We Build a Strong GAN
Completely Free of Convolutions?

/

** The charm of the transformer to computer vision lies in at least two-fold:

|. it has strong representation capability and is free of human-defined inductive
bias. In comparison, CNNs exhibit a strong bias towards feature locality, as
well as spatial invariance due to sharing filter weights across all locations;

Il. the transformer architecture is general, conceptually simple, and has the
potential to become a powerful “universal” model across tasks and domains
(Dosovitskiy et al., 2020).1t can get rid of many ad-hoc building blocks
commonly seen in CNN-based pipelines (Carion et al., 2020).



What is Transformers?
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Figure I: The Transformer - model architecture.
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What is Transformers?
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.
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What is Transformers?

+* Multi-head attention allows the model to jointly attend to information from
different representation subspaces at different positions. With a single
attention head, averaging inhibits this.

MultiHead (Q,K,V) = Concat(head,.., head;)W?°

where head; = Attention(QWl-Q,KWiK, vw)

** Where the projections are parameter matrices WiQ € R%modet X di, Wl-K €
R%model X dk ) WiV € R%model X Ak gnd Wio € R%model X di_



Background and related work

Vision Transformer (ViT)
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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https://arxiv.org/pdf/2010.11929.pdf
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Background and related work

Vision Transformer (ViT)
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Left: Filters of the initial linear embedding of RGB values of ViT-L/32.
Right: Similarity of position embeddings of ViT-L/32. Tiles show the cosine
similarity between the position embedding of the patch with the indicated row
and column and the position embeddings of all other patches.

Input patch column

Dosovitsky et al., 2020; An image is worth 16x16 words: Tables from link 13

Transformers for image recognition at scale
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Background and related work

Model Layers Hidden size ) MLPsize Heads Params
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

Ours-JFT Ours-JFT Ours-121K BiT-L Noisy Student

(ViT-H/14) (ViT-L/16)  (ViT-L/16) (ResNetl52x4) (EfficientNet-L2)
ImageNet 88.550+0.04 87.76+0.03 85.30+0.02 87.54 £ 0.02 88.4/88.5"
ImageNet RealL 90.72+005 90544003 88.62+0.05 90.54 90.55
CIFAR-10 9950 006 99424003 9915+ 0.03 09.37 +0.06 —
CIFAR-100 9455 +o004 9390 +005 9325 +0.05 03.51 +0.08 —
Oxford-11IT Pets 97.56 +too03 97.32+011  94.6T+0.5 06.62 + 0.23 —
Oxford Flowers-102  99.68 +002 99.T4+0.00 99.61 +0.02 099.63 +0.03 —
VTAB (19 tasks) Tr.63+023 TH.284+046 T2.72x021 T6.29 %+ 1.70 —
TPUv3-core-days 2.0k .08k .23k 9.9k 12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We re-
port mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision
Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all
datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the
smaller public ImageNet-21k dataset performs well too. *Slightly improved 88.5% result reported
in Touvron et al. (2020).
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Methods

TransGAN: Two Transformers Can Make One Strong GAN
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Figure 1. The pipeline of the pure transform-based generator and discriminator of TransGAN. Here H = W =8 and Hy = Wy = 32.
We show 9 patches for discriminator as an example while in practice we use 8 x 8 patches across all datasets.
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Ceng 796 - Deep Generative Models

Up Scaling
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Figure 1. The proposed efficient sub-pixel convolutional neural network (ESPCN), with two convolution layers for feature maps extraction,
and a sub-pixel convolution layer that aggregates the feature maps from LR space and builds the SR image in a single step.
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Methods

TransGAN: Two Transformers Can Make One Strong GAN
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Figure 1. The pipeline of the pure transform-based generator and discriminator of TransGAN. Here H = W =8 and Hy = Wy = 32.
We show 9 patches for discriminator as an example while in practice we use 8 x 8 patches across all datasets.

17



Data Augmentation

Table 2. The effectiveness of Data Augmentation (DA) on both
CNN-based GANs and TransGAN. We used the full CIFAR-10

training set and DiffAug (Zhao et al., 2020b).

METHODS DA IS T FID |
WGAN-GP X 6.49 £ 0.09 39.68
(GULRAJANI ET AL., 2017) v 6.29+0.10 37.14
AUTOGAN X 8.55+0.12 12.42
(GONG ET AL., 2019) v 8.60 £ 0.10 12.72
STYLEGAN v2 X 9.18 11.07
(ZHAO ET AL., 2020B) v 9.40 9.89

X 6.95+0.13 41.41
TRANSGAN J  8.15+0.14 19.85

— --"/ -
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Co-Training with Self-Supervised
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Auxiliary Task

An auxiliary task of super resolution, in addition to the GAN loss. This
task comes “for free”, since we can just treat the available real images

as high-resolution, and down sample them to obtain low-resolution
counterparts.

Generator

Figure 2. Co-training the transformer (¢ with an auxiliary task of
super resolution. “LR™ and “SR™ represent low-resolution input
and high-resolution output respectively.
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Co-Training with Self-Supervised

Auxiliary Task

* The generator loss is added with a auxiliary term A * Lgp, where

Lsp is the mean-square-error (MSE) loss and the coefficient 4 is
empirically set as 50.

Table 3. Ablation studies for multi-task co-training (MT-CT) and
locality-aware self-attention initialization on TransGAN.

MODEL ISt FID|
TRANSGAN + DA (%) 8.15+0.14 19.85
(*) + MT-CT 8.20+ 0.14 19.12

(*) + MT-CT + LocAL INIT. 8.224+0.12 18.58
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Locality-Aware Initialization for

Self-Attention

(Dosovitskiy et al., 2020) observed that transformers still tend to learn
convolutional structures from images.

Therefore, a meaningful question arises as, can we efficiently encode
inductive image biases while still retaining the flexibility of
transformers?

Introduced a mask by which each query is only allowed to interact with
its local neighbors that are not “masked”.
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Locality-Aware Initialization for

Self-Attention

» Different from previous methods (Daras et al., 2020; Parmar et al., 2018;
Child et al., 2019; Beltagy et al., 2020) during training we gradually
reduce the mask until diminishing it, and eventually the self-attention is
fully global.

1
1

||
11

Early Stage Middle Stage Final Stage

Gradually Increasing Receptive Field

Figure 3. Locality-aware initialization for self-attention. The red
block indicates a query location, the transparent blocks are its al-
lowable key locations to interact with, and the gray blocks indicate
the masked region. TransGAN gradually increases the allowable
region during the training process.
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Locality-Aware Initialization for

Self-Attention

During training the mask gradually reduced until diminishing it, and
eventually the self-attention is fully global.

A localized self-attention (Parmar et al., 2018) is most helpful at the early
training stage, but can hurt the later training stage and the final
achievable performance.

We consider this locality-aware initialization as a regularizer that comes
for the early training dynamics and then gradually fades away (Golatkar
et al., 2019).
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Scaling up to Large Models

Table 4. Scaling-up the model size of TransGAN on CIFAR-10.
Here “Dim” represents the embedded dimension of transformer
and “Depth” 1s the number of transformer encoder block in each
stage.

MODEL DEPTH Dim IS T FID |

TRANSGAN-S {5,2,2} 384 8.22 +0.14 18.58
TRANSGAN-M {5,2,2} 512 836 £0.12 16.27
TRANSGAN-L {5,2,2} 768 8.50 £ 0.14 14.46
TRANSGAN-XL {5,4,2} 1024 8.63+0.16 11.89
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(a) Cifar-10 (b) STI-10 (¢) CelebA 64 x 64

Figure 4. Visual Results of TransGAN on CIFAR-10, STL-10, and CelebA 64 x 64.
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Experiments & Results

Table 1. Inception Score (IS) and FID results on CIFAR-10. The
first row shows the AutoGAN results (Gong et al., 2019); the
second and thirds row show the mixed transformer-CNN results;
and the last row shows the pure-transformer GAN results.

GENERATOR DISCRIMINATOR IST FID|
AUTOGAN AUTOGAN 8.55+0.12 12.42
TRANSFORMER AUTOGAN 8.59+0.10 13.23
AUTOGAN TRANSFORMER 6.174+-0.12 49.83

TRANSFORMER TRANSFORMER 6.951L0.13 4141

26
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Experiments & Results

Table 5. Unconditional image generation results on CIFAR-10.

METHODS | IS " FID
g}ﬁﬁiﬁﬁl ET AL., 2017) 6.49£0.09 | 39.68
%\I}A(r;gNl-:r AL., 2017) 7.17x0.17 -

?WF/I:/FIRDE-FARLEY & BENGI0, 2016) 7724+ 0.13 -

(SGP;IITNEET(;?]:L 2017) 790 £0.09 | -

RAMEO: ﬁoawdzro)_lgﬁ)h[ 8.29 16.21
?f—l(;)i[:l(; ET AL., 2018) 8.33£0.10 | 26.7
(QI\IZIJIS\?EFT AL., 2018) 8.224+0.05 | 21.7
(KARRAS 11 22 2017 $804005 | 15.52
?(EJJ;)SSIE\]AL 2019) 8.5540.10 | 12.42
?EJESE;?I;J.KZQOZOB) 9.18 11.07
TRANSGAN-XL 8.63+£0.16 | 11.89
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Conclusion

(J Model Architecture:

= build the first GAN using purely transformers and no convolution. To
avoid over-whelming memory overheads,

= Memory-friendly generator and a patch-level discriminator created,
both transformer-based without bells and whistles.

= Trans-GAN can be effectively scaled up to larger models.



Conclusion

O Training Technique:
= to train TransGAN better, ranging from data augmentation, multi-
task co-training for generator with self-supervised auxiliary loss,
and localized initialization for self-attention.

U Performance:

= TransGAN achieves highly competitive performance compared to
current state-of-the-art CNN-based GANs.
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Conclusion

CNN is All
You Need?

Attention is
All You
Need?

MLP is All
You Need?
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Thank you for listening!
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